4th AIAA CFD High-Lift Prediction Workshop

KHI's Grid Information

Unstructured Grid: "Cflow"

Yosuke Ueno, Hidemasa Yasuda

Aerodynamic Engineering Section
Technology Development Department
Engineering Group
Aerospace Business Division
Aerospace Systems Company
Kawasaki Heavy Industries, Ltd. (KHI)

Outline

General Information on Grid Generator

- KHI's Grid Generator "*Cflow*"
- Available Data Format
- Contact Information

Information on Generated CRM-HL Grid

- Grid Information
- Geometry Modifications
- Comparisons with other grids (Pointwise, ANSA)

Cflow (in-house CFD tool)

KHI originally developed "Cflow" (not our product)

- Cflow has the function of an **automatic grid generator** using an **Adaptive Mesh Refinement (AMR)** method
- Sample grid photos used in other workshops:

Grid Generation Procedure in Cflow

Cflow automatically generates body-fitted layered grids on no-slip walls to resolve boundary layers and hexahedral grids in the other regions.

Surface grid is also automatically generated after the projection in Step 4.

Available Data Format

Cflow can provide the following data formats:

- CGNS (for visualization with "Paraview")
- PLT (for visualization with "Tecplot")
- UNS (for visualization with "Fieldview")
- * Cflow is not our product; other formats are not supported.
- * Cflow grid has hanging nodes; other solvers may not be able to handle it.
- * The main objective of sharing our grid is to allow other participants to see its details and use it as a reference when creating their own grid. We would be grateful if you could provide useful feedback for improving our grid and our grid generator.

Contact Information

- Yosuke Ueno (ueno_yosuke@khi.co.jp)
- Hidemasa Yasuda (yasuda_hidemasa@khi.co.jp)

Latest Reference Papers on *Cflow* details

- Ueno, Y. and Ochi, A., "Airframe Noise Prediction Using Navier-Stokes Code with Cartesian and Boundary-fitted Layer Meshes," 25th AIAA/CEAS Aeroacoustics Conference, (AIAA 2019-2553). https://doi.org/10.2514/6.2019-2553
- 2. Yasushi Ito, Mitsuhiro Murayama, Atsushi Hashimoto, Takashi Ishida, Kazuomi Yamamoto, Takashi Aoyama, Kentaro Tanaka, Kenji Hayashi, Keiji Ueshima, Taku Nagata, Yosuke Ueno and Akio Ochi, "**TAS Code, FaSTAR** and Cflow Results for the Sixth Drag Prediction Workshop," Journal of Aircraft, Vol. 55, No. 4, pp. 1433-1457, 2018. https://doi.org/10.2514/1.C034421
- 3. Yasushi Ito, Mitsuhiro Murayama, Yuzuru Yokokawa, Kazuomi Yamamoto, Kentaro Tanaka, Tohru Hirai, Hidemasa Yasuda, Atsushi Tajima and Akio Ochi, "*JAXA's and KHI's Contribution to the Third High Lift Prediction Workshop,"* Journal of Aircraft, Vol. 56, No. 3, pp. 1080-1098, 2019. https://doi.org/10.2514/1.C035131

Generated CRM-HL Grid Information

- Configuration: nominal flap deflection (40/37) only (as of Apr. 22nd)
- Target Level: C (though cells on trailing edges are smaller)
- Scale, unit: Full-scale, inch
- $Y^+ \sim 1$ (minimum cell size=0.00106 inch)
- Total number of cells: 365,745,692
- Total number of nodes: 367,946,331
- Total number of surface cells: 9,573,151

Boundary names: see Table 1

Table 1. Boundary names / cells

_Free (Farfield)	62,208
_Symmetry (Y=0)	244,211
BODY	185,628
FAIRING	40,695
WING	1,921,277
SLAT_INNER	969,157
SLAT_OUTER	3,060,019
SLAT_LINK (Bracket)	262,186
FLAP_INNER	845,236
FLAP_OUTER	1,359,107
FLAP_LINK	4,360
PYLON	48,998
NACELLE	393,850
FTF_IN	59,300
FTF_MID	37,264
FTF_OUT	43,369
FTF_LINK	36,286

Geometry Modifications

Slat bracket sharp region:

We add triangular blocks (shown in red) to fill small gaps.

Geometry Modifications

FTF sharp region:

We add triangular blocks (shown in red) to fill small gaps.

Pointwise (1.3.C, 142M cells)	ANSA (101.C, 217M cells)	Cflow (366M cells)
		Z Z
		Cell size: 114 mm (=4.5 inch)

Pointwise (1.3.C, 142M cells)

ANSA (101.C, 217M cells)

Cflow (366M cells)

Pointwise ANSA Cflow (366M cells) (101.C, 217M cells) (1.3.C, 142M cells)

Pointwise (1.3.C, 142M cells)

ANSA (101.C, 217M cells)

Surface mesh is not parallel/normal to the leading and trailing edges

Cflow (366M cells)

(CFD Results: RANS with SA-neg, AoA=7.05)

Skin friction (Cf)

(CFD Results: RANS with SA-neg, AoA=7.05)

Surface pressure and cross-section Mach

(CFD Results: RANS with SA-neg, AoA=7.05)

Iso-surface of total pressure (Ptratio=0.99)

Kawasaki, working as one for the good of the planet "Global Kawasaki"

